

PLASTIC PARTS FAILURE ANALYSIS & PRODUCT LIABILITY PREVENTION

VISHU H. SHAH CONSULTEK

AUGUST 23, 2006

Topics

- Plastics Part Failures Overview
- Four Key reasons behind part failures
- Types of Failures
- Analyzing Failures Steps and Tools
- Case Studies
- Failure Analysis Checklist
- Concurrent Engineering Practices
- Product Liability & Prevention
- Q & A

Why do parts fail?

Plastics

VS.

Metal and other traditional materials

PLASTICS ARE VISCOELASTIC

Metal Elasticity Strength Form-stability

Liquid

Flow characteristics

Depending on time,

Temperature, rate and amount of loading

Viscoelasticity: The tendency of plastics to respond to stress as if they were a combination of elastic solids and viscous fluids.

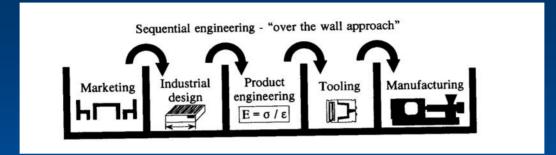
Viscoelastic behavior of plastics makes them sensitive to strain rate as well as temperature.

Plastics

Plastic is not Metal

• Designing Metal parts

Metals usually display largely unchanged mechanical behavior right up to the vicinity of their recrystallization temperature (> 300°C).


For most applications – Designers can disregard effect of temperature, environment and long term effect of load. Rely on instantaneous stressstrain properties.

• Designing Plastics Parts

Properties vary considerably under the influence of temperature, load, environment, and presence of chemicals.

- Synergistic effect Most often overlooked
- Material Selection Challenge
- 50Primary Types
- 500 Suppliers
- 50,000 Grades
- Processing Nightmares equipment/Tooling/personnel
- End-user education
- Concurrent Engineering

CONCURRENT ENGINEERING TO PREVENT FAILURES

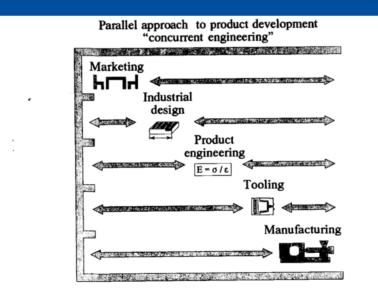
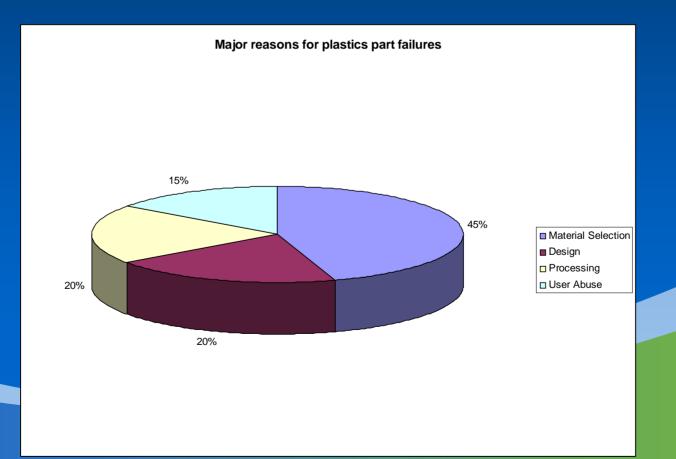



Figure 3.4. "Parallel" or "Concurrent Engineering" approaches to product design reduce development time, improves quality, and minimizes the potential for unanticipated production or performance problems.

Four Key factors

- 1. Material Selection
- 2. Design
- 3. Process
- 4. Service Conditions

Material Selection Challenge

- Large Data base......50 major types 500 suppliers – 50,000 Grades
- Standardization issues....Tests, test specimen, testing organizations
- Difficulty in comparing data on equal basis
- Lack of multipoint measurement data
- Overzealous sales and marketing efforts
- Limited educational material availability

Material Selection

Material Selection Pitfalls

- Datasheet interpretation
- Synergistic effects
- Economics
- Supplier Recommendations
- Application checklist

Material Supplier Data Sheets

- Material supplier data sheet purpose
- Origination of data sheets
- Meaning of reported values
- How are the values generated
- Interpretation of the data
- Application of the data for practical use

Typical data sheet

			_	10	able 2. Ty				_
					100.000.000	ard Delrin	ALL PLOYAGES	5 ²	
-					1	Melt Flow R	ates1		
	Property ¹	Meth	od ISO	Unit	100	500	900	1700	
	Tensile Elongation at Break (5.1 mm/min) -55°C +23°C +70°C +100°C +100°C +121°C	D638	R527	%	38 75 230 >250 >250	15 40 220 >250 >250	10 25 180 >250 >250	17 >250 >250	
Strength	Tensile Strength (5.1 mm/min) -55°C +23°C +70°C +100°C +121°C	D638	R527	MPa	101 69 48 36 26	101 69 48 36 26	101 69 48 36 26	88 68 40 27 21	
	Shear Strength +23°C	D732	-	MPa	66	66	66	58	
	Flexural Yield Strength (1.3 mm/min) +23°C	D790	178	MPa	99	97	97	-	
	Poisson Ratio	-	-	-	0.35	0.35	0.35	0.35	
	Tensile Modulus (5.1 mm/min) +23°C	D638	R527	MPa	2800	3100	3100	3100	
daa	Flexural Modulus (1.3 mm/min) -55°C +23°C +70°C +100°C +121°C	D790	178	МРа	3650 2900 1550 900 600	3900 2950 1600 900 600	4130 2960 1650 950 600	4500 3000 1400 900 700	
Stiffness and Creep	Compressive Stress (1.3 mm/min) +23°C at 1% Def. +23°C at 10% Def.	D695	604	MPa	36 124	36 124	34 121	22 106	
Stiffn	Deformation under Load 13.8 MPa at +50°C	D621	-	%	0.5	0.5	0.5	0.9	
	Flexural Fatigue Endurance Limit 50% RH, +23°C, 10 ^e Cycles	D671		MPa	32	31	32	-	
	Tensile-Impact Strength +23°C	D1822 Long	8256 Long	kJ/m²	358	210	147	213	
Tourhness	Izod Impact (Notched) -40°C +23°C	D256	R180	J/m	96 123	64 80	53 70	53 58	
	Izod Impact (Unnotched) +23°C	D256	R180	J/m	(no break)	(no break)	854	1060	

6

Values listed are only to be used on a comparative basis between melt flow rates. Colorants, additives, and stabilizers used in, or added to, different grades of Delrin may alter some or all of these properties. Contact DuPont for specific data sheets.

Colorants, additives, and stabilizers used in, or added to, different grades of Delrin may alter some or all of these properties. Contact DuPont for specific data sheets. ³ All of the values reported in this table are based on ASTM methods. ISO methods may produce different test results due to differences in test specimen dimensions and/or test procedures.

⁴ 100ST and 500T tensile and elongation values are determined at a strain rate of 5.0 cm/min. Values for other compositions were determined at 0.5 cm/min.

					Stand	dard Delri	n Products	2
						Melt Flow	Rates ¹	
	Property ¹	Meth	iod ISO	Unit	100	500	900	1700
	Heat Deflection Temperature ⁹ 1.8 MPa 0.5 MPa	D648	75	°C	125 169	129 168	130 167	123 171
la!	Melting Point (Crystalline)	D2117	3146	°C	175	175	175	175
Thermal	Coefficient of Linear Thermal Expansion -40 to +29°C +29 to +60°C +60 to +104°C +104 to + 149°C	D696		10 ^{-s} m/m°C	10.4 12.2 13.7 14.9	10.4 12.2 13.7 14.9	10.4 12.2 13.7 14.9	1111
	Thermal Conductivity			W/mK	0.4	0.4	0.4	0.33
	Volume Resistivity at 2% water, +23°C	D257	IEC 93	ohm-cm	1015	1015	1015	1014
	Dielectric Constant 50% RH, +23°C, 10 ^e Hz	D150	IEC 250		3.7	3.7	3.7	4.7
Electrical	Dissipation Factor 50% RH, +23°C, 10° Hz	D150	IEC 250	-	0.005	0.005	0.005	0.011
Elec	Dielectric Strength Short Time (2.3 mm)	D149	IEC 243	MV/m	19.7	19.7	19.7	16.0
	Arc Resistance Flame extinguishes when arcing stops (3.1 mm)	D495	-	sec	220 no tracking	220 no tracking	220 no tracking	120.0 no tracking
	Water Absorption, +23°C 24 hr Immersion Equilibrium, 50% RH Equilibrium, Immersion	D570	62	%	0.25 0.22 0.90	0.25 0.22 0.90	0.25 0.22 0.90	
	Rockwell Hardness	D785	2039	-	M94, R120	M94, R120	M94, R120	M91, R122
SNO	Combustibility ⁴	UL94	-		94HB	94HB	94HB	94HB
Miscellaneous	Coefficient of Friction (no lubricant) ⁶ Static Dynamic	D3702		1 1	0.20 0.35	0.20 0.35	0.20 0.35	=
	Specific Gravity'	D792	R1183	-	1.42	1.42	1.42	1.41
	Melt Flow Rate ^a	D1238	1133	g/10 min	1.0	6.0	11.0	16.0
	Chemical Resistance ⁶		esins have de variety c	outstanding re of solvents.	sistance to n	eutral chem	icals includ	ing

¹ Values listed are only to be used on a comparative basis between melt flow rates. Colorants, additives, and stabilizers used in, or added to, different grades of Deirin may alter some or all of these properties. Contact DuPont for specific data sheets.

² Colorants, additives, and stabilizers used in, or added to, different grades of Delrin, may alter some or all of these properties. Contact DuPont for specific data sheets. ³ All of the values reported in this table are based on ASTM methods. ISO methods may produce different test results due to differences in test specimen dimensions and/or test procedures.

conterences in test spectruen dimensions and/or test proceeded.
4 The UL 94 test is a laboratory test and does not relate to actual fire hazard.

¹⁰ Thrust washer test results depend upon pressure and velocity. That test conditions for Delrin were 10 fpm (50 mm/s) and 300 psi (2 MPa) rubbing against AISI carbon steel, Rc 20 finished to 16 µm (AA) using a Faville-LeValey rotating disk tester.

8

Table 2. Typical Properties of Delrin

Typical Data Sheet

Product Data

RADEL[®] R polyphenylsulfone

R-5000, R-5100 NT15, R-5500

RADEL R polyphenylsulfone resins offer exceptional hydrolytic stability, and toughness superior to other commercially-available, high-temperature engineering resins. They offer high deflection temperatures and outstanding resistance to environmental stress cracking. The polymer is inherently flame retardant, and also has excellent thermal stability and good electrical properties.

RADEL R resins are available as an opaque general purpose injection molding grade-R-5100 NT15, a transparent injection molding grade-R-5000, and a transparent extrusion grade-R-5500.

	ASTM		Typica	l Values ⁽¹⁾	
	Test	U.S. Customary Units		SI Units	
Property	Method	Value	Units	Value	Units
Mechanical					
Tensile Strength	D 638	10.1	kpsi	70	MPa
Tensile Modulus	D 638	340	kpsi	2.3	GPa
Tensile Elongation at yield	D 638	7.2	%	7.2	%
Tensile Elongation at break	D 638	60-120	%	60-120	%
Flexural Strength ⁽²⁾	D 790	13.2	kpsi	91	MPa
Flexural Modulus	D 790	350	kpsi	2.4	GPa
Tensile Impact Strength	D 1822	190	ft-lb/in²	400	kJ/m²
Izod Impact, Notched	D 256	13	ft-lb/in	690	J/m
Thermal					
Deflection Temperature at 264 psi (1.82 MPa)	D 648	405	°F	207	°C
Flammability Rating ⁽³⁾	UL-94	V-0	0.030 in	V-0	0.75 mm
Coefficient of Thermal Expansion	D 696	31	ppm/°F	56	ppm/°C
Glass Transition Temperature ⁽⁴⁾		428	°F	220	°C
Electrical					
Dielectric Strength at 0.125 in. (3.2 mm)	D 149	380	V/mil	15	kV/mm
Dielectric Strength at 0.001 in. (0.02 mm)		>5,000	V/mil	>200	kV/mm
Dielectric Constant at 60 Hz	D 150	3.44		3.44	
Volume Resistivity	D 257	9 x 10 ¹⁵	ohm-cm	9 x 10 ¹⁵	ohm-cm
Chemical					
Steam Sterilization ⁽⁵⁾ w/ Morpholine, cycles pa without cracking, crazing, or rupture	issed	>1000	cycles	>1000	cycles
Water Absorption at 24 hours	D 570	0.37	%	0.37	%
Water Absorption at Equilibrium	D 570	1.10	%	1.10	%
General and Fabrication		R-5000	R-510	0 NT15	R-5500
Specific Gravity	D 792	1.29		1.30	1.29
Refractive Index	D 542	1.672		opaque	1.672
Melt Flow at 689°F (365°C), 5.0 kg, g/10 min	D 1238	17		17	11.5
Mold Shrinkage, %	D 955	0.7		0.7	0.7
 Actual properties of individual batches will vary within specification limits. Unless otherwise specified, properties were measured using one-eighth inch (3.2 mm) thick injection molided specimens. at 5% strain 	 ⁽³⁾ These flammability ratings are no presented by these or any other r conditions. ⁽⁴⁾ Measured by differential scanning of 36°F (20°C) per minute. 	re not intended to reflect hazards ther materials under actual fire MPa: Stress Level - 1000 pal 7.0 MP:		re - 27 psia 0.19	

Typical Data Sheet

Properties	ASTM Method	Compression Molded	Injection Molded
Yield Tensile Strength ² , psi. kgf/cm ²	D 638	6,200 435	7,900
Ultimate Tensile Strength ² , psikgf/cm ²	D 638	6,200 435	7,900
Yield Elongation, %	D 638	1.5	2.4
Ultimate Elongation, %	D 638	1.5	2.4
Tensile Modulus ³ , psi kgf/cm ²	D 638	470,000 33,000	485,000 34,000
Izod Impact Strength, ft Ibf/in of notch @ 73°F cm kgf/cm of notch @ 23°C	D 256	0.25	0.45
Hardness, Rockwell M	D 785	76	76
Deflection Temperature Annealed,			
°F @ 264 psi °C @ 18.6 kgf/cm²	D 648	214 101	212 100
Vicat Softening Point, "F	D 1525	224	4
°C	(Rate B)	107	7
Melt Flow Rate, g/10 min	D 1238 (Cond. G)	2.4	
Specific Gravity	D 792	1.04	4

These are typical property values, intended only as guides, and should not be construed as sales specifications. 'Measured in ft lbf/in of notch at 73°F on compression molded samples.

"Tensile properties obtained at a crosshead speed of 0.2 in/min (0.51 cm/min); gage length of 2.0 in (5.1 cm); span of 4.5 in (11.4 cm).

'Tensile modulus obtained at a crosshead speed of 0.05 in/min (0.13 cm/min). Test specimen thickness 1/8 in (0.32 cm).

- Handling Considerations, see reverse side

NOTICE: This information is presented in good faith, but no warranty, express or implied, is given nor is freedom from any patent owned by The Dow Chemical Company or by others to be inferred. Inasmuch as any assistance furnished by Dow with reference to the proper use and disposal of its products is provided without charge, Dow assumes no obligation or liability therefor.

DOW CHEMICAL U.S.A.

OLEFINS AND STYRENICS, PLASTICS DEPARTMENT

MIDLAND, MI 48674

* Trademark of The Dow Chemical Company

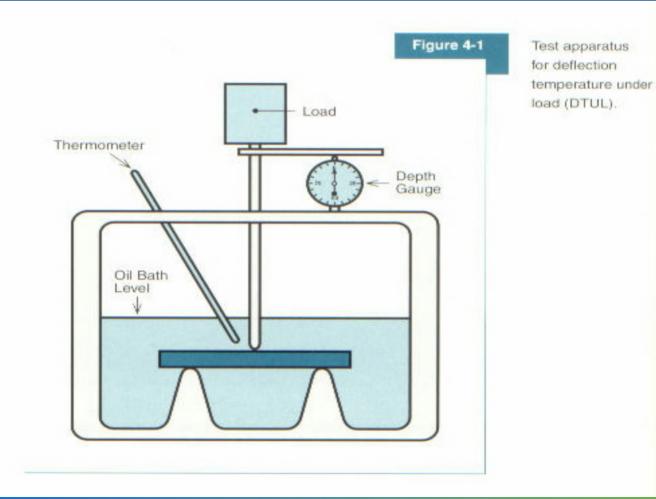
Form No. 301-744-1085

Printed in U.S.A.

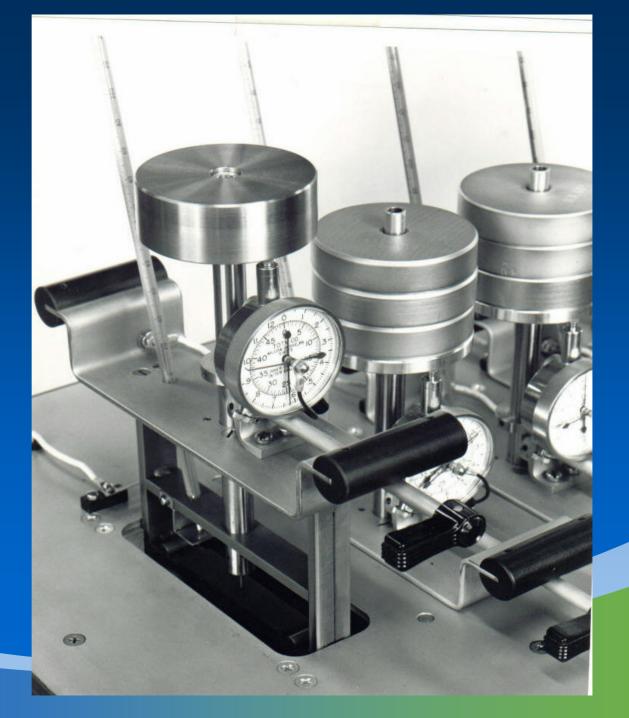
Purpose of a data Sheet

- Compare property values of different plastics materials (Tensile strength of nylon vs. Polystyrene, Impact strength of ABS vs. Polycarbonate)
- Quality control guidelines for material manufacturers
- Purchasing/Material specifications
 Initial screening of various materials

Data Sheets Are <u>NOT</u> Meant to Be Used for


- Engineering design
- Final(ultimate) material selection
- Why?
- Reported data generally derived from short term tests
- Usually from single point measurement
- Laboratory conditions
- Standard test bars

 Values are generally higher and do not correlate with actual use conditions


HDT vs. CONTINUOUS USE TEMPERATURE(UL TEMPERATURE INDEX)

Material	HDT	Continuous Use Temp.
Ryton R-4 (Polyphenylene Sulfide)	>500 °F	338 °F
Ultem 4000 (Polyetherimide)	412 °F	122 °F
Delrin 100AL	325 °F	122 °F

HDT (DTUL) TEST

HDT Test

Continuous use Temperature UL's relative Thermal Index based upon historical records

Material °C **Generic Thermal Index**

Nylon (type 6, 6/6, 6/10, 11)	65
Polycarbonate	80
Phenolic	150
PTFE	180
RTV Silicone	105
PET Film	105

Failure resulting from Selecting incorrect material from short term thermal test data

Figure 6-8 IPS salad bowls deformed and cracked due to washing in dishwasher

Material Selection Process

- Define requirements
- Narrow down choices...process of elimination...clear vs. opaque
- Rigid, flexible, elastomeric?
- Specific application? Medical?
- Material selection guidelines
- Specific property requirement...

Material Selection Process

• Identify application requirements

Mechanical (Load, Stiffness, Impact etc.) Thermal (temperature range, Maximum use temperature, etc) Environmental considerations (Weather, UV, Moisture)

• Identify the chemical environment Define the chemical stress, temperature, contact time, type of chemical

• Identify special needs

Regulatory (UL, FDA, NSF, etc.) Outdoor or UV exposure Light transmission, Fatigue and creep requirements

• Define Economics

- Define Processing Considerations Type of Process (Injection Molding, Extrusion, Blow Molding, Thermoforming, etc.)
- Define Assembly requirements
 Painting/Plating
 Shielding
 - Search history for similar commercial applications

Identifying Application Requirements

- Physical Properties Specific Gravity Mold Shrinkage Rheology
- Mechanical Properties

Tensile Strength Tensile Modulus (Stiffness-Resistance to bending) Tensile Elongation/Ductility Impact strength Fatigue Endurance (Resistance to high frequency cyclic loading) Creep resistance (Resistance to long-term deformation under load)

• Thermal Properties

Deflection Temperature Under Load (DTUL,HDT) Thermal Conductivity Thermal expansion coefficient (Problems in Piping systems, Example Expansion Joints) Continuous Use Temperature (Relative thermal Index)

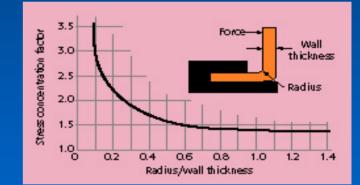
Regulatory Performance
 Flammability (UL 94)
 High Voltage Arc Tracking
 FDA

Identifying Application Requirements (cont.)

Environmental Considerations

Exposure to UV, IR, X-Ray High humidity Weather Extremes Pollution: Industrial chemicals Microorganisms, bacteria, fungus, mold

The combined effect of the factors may be much more severe than any single factor, and the degradation processes are accelerated many times.


Published test results do not include synergistic effects...always existent in real -life situations.

Identifying Application requirements (Cont.)

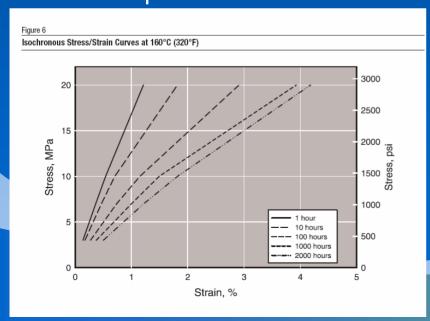
• Chemical Behavior/Chemical resistance

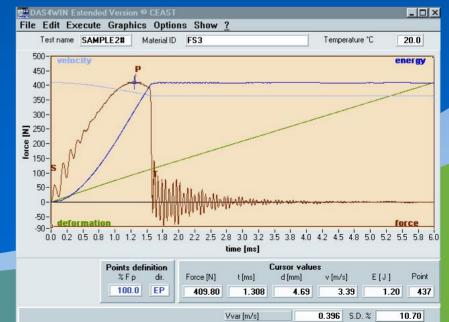
Resistance of Thermoplastics to various chemicals is dependent on:

- Time (of contact with chemical)
- Temperature
- Stress (Molded-in or External)
- Concentration of the chemical

- Chemical Exposure may result in:
- Physical Degradation Stress cracking, Crazing, Softening, Swelling, Discoloration
- Chemical Attack Reaction of chemical with polymer and loss of properties

Chemical Exposure


Property	Thermoplastics	Thermosets
Low temperature Low cost Low gravity Thermal expansion Volume resistivity Dielectric strength Elasticity Moisture absorption Steam resistance Flame resistance Flame resistance Flame resistance Stress craze resistance High temperature Gasoline resistance Impact Cold flow Chemical resistance Scratch resistance Abrasive wear Colors	TFE PP, PE, PVC, PS polypropylene methylpentene phenoxy glass TFE PVC EVA, PVC, TPR chlorotrifluroethylene polysulfone TFE, PI chlorinated polyether polypropylene TFE, PPS, P1, PAS acetal UHMW PE polysulfone TFE, FEP, PE, PP acrylic polyurethane acetate, PS	DAP phenolic phenolic/nylon epoxy-glass DAP DAP, polyester silicone alkyd-glass DAP melamine DAP melamine DAP all silicones phenolic epoxy-glass melamine-glass epoxy allyl diglycol carbonate phenolic-canvas urea, melamine


TABLE 7.3 SOME CHOICE MATERIALS

Material selection using multi-point data

- Data sheets with single point measurement readily available
- Data sheets with multi point data ask supplier

Multi-point data Isochronous stress-strain curves Multi point (Load- energy-time) Impact data Multi point thermal data

New Application	Checklist
-----------------	-----------

This checklist includes critical considerations for new part development. Its use will help provide a more rapid and more accurate recommendation.

			Data			
Customer						
Customer			Part			
Project timing						
Driving force						
Current product						
Its performance						
Comments						
Part Functio	m — What is the part supp	bosed to do?				
Appearance						
Clear						
- w	vater clear					
- v	ery clear					
D 8	enerally clear, maximum ha	ze level:				
🗆 ti	ransparent color, maximum ha	ze level:				
Commen	nts:		-	1000		
0.000.000						
Opaque	siah alace					
0.000	nigh gloss					
	nedium gloss					
	ow gloss	D from exist			from the m	ald
	from the plastic	from paint			from the m	old
Commen						
Colors de	esired:				P	
Colors de	esired:				from both	
Colors de [Criticality	esired:	from paint			from both	
Colors de [Criticality dayli	esired:	from paint %	light		P	allowed)
Colors de Criticality dayli Commen	esired:	from paint %	light		from both	allowed)
Colors de Criticality dayli Commen	esired:	from paint %	light		from both	allowed) OK
Colors de Criticality Commen Critical	esired:	from paint %	light	 all (no	from both metamerism Minor	
Colors de Criticality Commen Critical Commen	esired:	from paint %	light None	Invisible	from both metamerism Minor	ок
Colors de Criticaliy dayli Commen Critical 8	esired:	from paint %	None	Invisible	from both metamerism Minor	ок
Colors de Criticaliy dayli Commen Critical 8 s	esired:	from paint %	light None	Invisible	from both metamerism Minor	ок
Colors de Criticaliy dayli Commen Critical 8 s	esired:	from paint % fluorescen	None	Invisible	from both metamerism Minor	ок
Colors de Criticaliy Conticaliy Commen Critical S S V Commen	esired:	from paint fluorescen	None	Invisible	from both metamerism Minor	ок
Colors de Criticality dayli Commen Critical S S Commer Critical	esired:	from paint fluorescen fease attach sketch pase attach sketch	None	Invisible	from both metamerism Minor	ок — —
Colors de Criticality dayli Commen Critical S S Commer Critical	esired:	from paint fluorescen	None	Invisible	from both metamerism Minor	ок — —
Colors de Criticality dayli Commen Critical S S Commer Critical	esired:	from paint fluorescen fease attach sketch pase attach sketch	None	Invisible	from both metamerism Minor	ок

ed pbysical cbaracteristics — ple	not too	from	from	from
	important	plastic	design	both
gidity				
rength (load bearing)				
at resistance				
eep resistance	H	님	Ц	
pact resistance emical resistance	H	Н	Ц	
errical resistance	님	H	H	H
etails:				
applied load/stress	static load	D pre	ssure [] cyclic
amount	normal	min.		ax
duration	normal	min		ax
frequency (if cyclic)	normal	min		ax
operating temperature	normal	min		ax
operating lifetime	normal	min		ax
Comments:				
impact resistance			ā.	
room temp.	acceptable			
low temp., °C/°F	acceptable		min	
Comments:				
dimensional tolerances				
dimensional tolerances deflection (under stress)	acceptable			
expansion (thermal)	acceptable		max	
shrinkage (mold)	acceptable		max	
creep	acceptable		max	
Comments:			max	
electrical properties				
dielectric constant	acceptable		min	
dissipation factor	acceptable			
volume resistivity	acceptable			
dielectric strength	acceptable			
Comments:	acception -	_		
	nicals, frequency & duration of /strain level, and type of resist)	
permanence	not to import		from plastic	from paint, etc.
color stability, indoor	П			
color stability, outdoor	Ē		Ē	ă
property retention, outdoor	Ē		Ē	п
Comments:		7		
d physical characteristics — con	tinued			
miscellaneous				
Rockwell hardness Others:	target	min		max

Regulatory Approvals	Requi	red?
----------------------	-------	------

	Underwriters Laboratory, Inc.	rating	thickness
	R.T.I. electrical °C	mechanical °C	with impact °C
	National Sanitation Foundation	type	
	Federal Specifications (Mil. Specs.)	type	
	Canadian Standards Administration	type	
	Food and Drug Association		
	U. S. Pharmacopeia	type	
Ē	Automotive Specifications		
	Other:		
Comr	nents:		
Process			
	Extrusion		
	 profile extrusion sheet extrusion — monolayer 		
	sheet extrusion — nonorayer		
	thermoforming		
	extrusion/blow molding		
	Comments:		
	Injection Molding		
	Comments:		
	·		
_	a l a		1.00000
	Secondary Operations		
	decorating		
	painting		
	plating		
	hot stamping		
	laminating		
	assembly		
	gluing		
	sonic welding		
	vibrational welding		
	mechanical assembly		
	Comments (What is attached to what, difference in typ	es of plastic, etc.?)	
	contract of management of management of management of the		

Customer Part Testing Requirements

Final Comments

Why Reinvent the Wheel?

Search history for similar commercial applications

Material Selection

Previous Applications

Before addressing a detailed material selection process, it is often worthwhile to determine if a similar part has been made before, and if so, from which material it was made. If such an application exists, it may be advisable to conduct further investigation into the specifics of the particular application to see whether newer or more appropriate materials can now be used.

Since it is impossible to list all applications - some grades are used for a multitude of parts in many industries - a relatively limited number has been listed.

This Application Matrix provides an overview of some typical applications in some of the numerous market segments served by GE Plastics.

For further information on a particular grade, please contact your local GE Plastics' representative.

Table 1-6. Application Matrix	(
Products		Automotive Interior
CYCOLAC ABS Resin	ease of molding surface quality thermal stability impact resistance wide range of colors	Instrument clusters and panels; glove box lids; pillar trim; vents, speaker grilles; door liners, poci ets; seat covers and knobs; ash trays; steering column covers; c sales, cladding
CYCOLOY PC/ABS Resin	 ease of molding very good flow low temperature impact very good indoor UV stability flame resistance 	Dashboard components and car ers, center consoles; glove boxt pillar trim, vents, grilles; air nozz parcel shelves
ENDURAN PBT Resin	chemical and stain resistance dimensional stability low water absorption very good processibility noise attenuation	
GELOY ASA Resin	excellent weatherability heat resistance impact resistance easthetics, colorability	Dashboard and door skins
GESAN SAN Resin	 clarity chemical resistance very good flow thermal stability 	Instrument lenses
LEXAN PC Resin	 transparency high impact dimensional stability temperature resistance flame resistance 	Seat belts; boot panels; speaker grilles; dashboard components, instrument panels and clusters, center consoles; heater covers; instrumentation lenses
NORYL Modified PPO Resin	electrical properties dimensional stability hydrolysis resistance temperature resistance low water absorption flame resistance	Dashboards and components, instrument clusters, center con soles; glove boxes, vents, grile ashtrays; panel trim; airducts, a nozzies; steering wheel parts; cel shelves; roof liners; seats; s belts, armrests, headrests; han winders
NORYL GTX PPE/PA Resin	on-line paintability low temperature impact temperature resistance chemical resistance low mold shrinkage	Dashboard components, center consoles, parcel shelf speaker covers, headrest frames; demis rails; heater covers; air nozles vents, grilles; seat-parts; switch
SUPEC PPS Resin	 chemical resistance inherent flame resistance heat resistance high strength very good electrical properties 	
ULTEM PEI Resin	 chemical resistance temperature resistance dimensional stability inherent flame resistance 	
VALOX PBT Resin	 very good electrical properties chemical resistance temperature resistance flame resistance fast molding 	Dashboard components, conne tors instrument clusters; windo cranks, door handles; pillar trin
XENOY PC/PBT Resin	 high impact resistance chemical resistance dimensional stability UV stability 	Structural components for das boards and instrument clusters door liners and cladding; bodt els; roof liners; soat componen sunroof components; door han

Material Selection

ible 1-6. (Continued)			
roducts	Appliances	Office Automation	Communication Equipment
YCOLAC IBS Resin	Bathroom and kitchen appli- ances; vacuum cleaners, refrig- erator door liners and panels, fans, covers, fronts and panels for washing machines, food preparation: mixers, processors, fruit presses, dental showers; lawn mower housings	Components and housings for business machines: computers, copying machines, printers, paper trays, cassettes, calcula- tors; keyboard caps and housings	Telephones: cordless handsets; cassettes; terminals
CYCOLOY PC/ABS Resin	Coffee makers, hairdryers, irons, mixers; shower back- plates; control panels; computer housings: terminals, towers, desktops, laptops, notebocks, palmtops; printer housings and components; copier parts	Structural components and housings for business machines; computers, printers, copiers, fax machines	Telephones: portable phones, car phones; telephone racks; modems; fax machine compo- nents; franking machines; bat- tery chargers
ENDURAN PBT Resin	Speaker housings; oven handles, iron handles, shaver handles		
GELOY ASA Resin			Outdoor, telecom
GESAN SAN Resin	Small appliances: blender jars, mincer jars, water pitchers, fans	Inkjet cassette housings, clear covers	Inkjet cassette housing, clear covers
LEXAN PC Resin	Chainsaw housings; iron han- dies, heated combs, hairdryers; food mixers and processors; sewing machines; air filters; mini vacuum cleaners; oven doors; components for dish- washer and laundry washing machines	Structural components for busi- ness machines: chassis, frames, covers; paper trays, brackets and supports, card cages, copier internals, disk drives, terminals; barcode scan- ners; smart cards, cassettes, cartridges	Exchange equipment; switch- boards; telephone modems and housings; smart cards
NORYL Modified PPO Resin	Washing machines, dryers, dishwasher components; vacu- um cleaners, hairdryers, mixers, coffee makers	Business machine chassis, frames and housings; compo- nents for computers, printers, copiers; keyboard parts	Telephone components
NORYL GTX PPE/PA Resin	Loundry washer and dryer doors, top loader frames, pow- der coatable panels; electrical engine frames; diffusors, gears, impellers		
SUPEC PPS Resin			
ULTEM PEI Resin	Hot combs, styling brushes, internal hairdryer parts; microwave oven parts; food preparation appliances; iron reservoirs	Disk drive cartridges, cooling fans; copier gears; sleeve bearings	Molded circuit boards, molded interconnect devices; telephone components
VALOX PBT Resin	Various housings such as chainsaw – grinder – powertool housings; vacuum cleaners, irons, coffeemakers, oven grilles, mixers, deep fat fryers, toasters; handles and knobs; motor components	Components for business machines: fans, fan housings, frames, keys and keyboards; switches, connectors	Components for telephones
XENOY PC/PBT Resin	Grinder and powertool hous- ings, lawn mower dacks, snow- blowers, weed trimmers		Wire and cable; fiber optic tubing

1-18 • Material Selection

Material Selection using Web

Matweb
 <u>www.matweb.com</u>

MatWeb, Your Source for Materials Information

• Ides

The Plastics Industry at Your Fingertips!

Plaspec

www.plaspec.com

Failure resulting from improper material selection

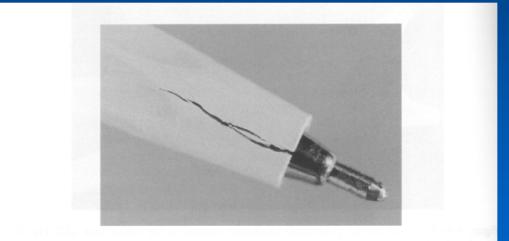
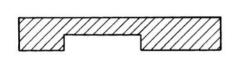


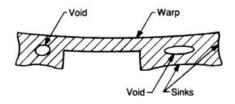
Figure 4-35 Impact polystyrene ballpoint pen barrel that cracked first or second time pen was used

Designing Plastics Parts

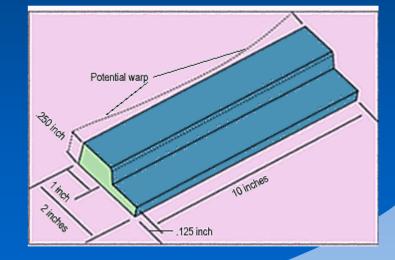
- With exception of few basic rules in designing plastic parts, the design criteria changes from material to material & application to application
- Challenge: Economics, functionality, manufacturability and aesthetics
- Compromise & trade offs lead to failures
- Systematic approach to developing new product

Most Common Mistakes in Design of Plastics


- Non-uniform wall thickness
- Sharp corners, lack of radius
- Draft angle considerations
- Thread design
- Lack of Creep considerations
- Lack of Environmental considerations
 - Direct conversion from other materials


Wall Thickness

Basic Rules


- Nominal Wall thickness 0.250 or less
- Transition must be less than +/- 25% nominal wall thickness, gradual transition is the best
- Draft greater than 1 degree preferred
- Draft for textured parts +/- 1 degree for every 0.001 inch of textured depth

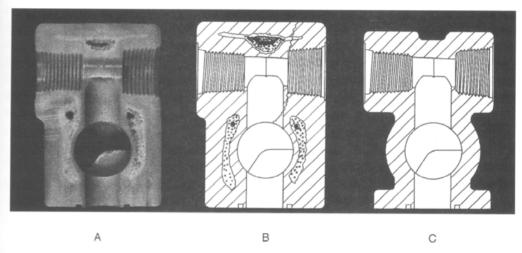
Wall thickness variations greater than 25% will exhibit high levels of moldedin stress, resulting in sinks, voids, and distortion.

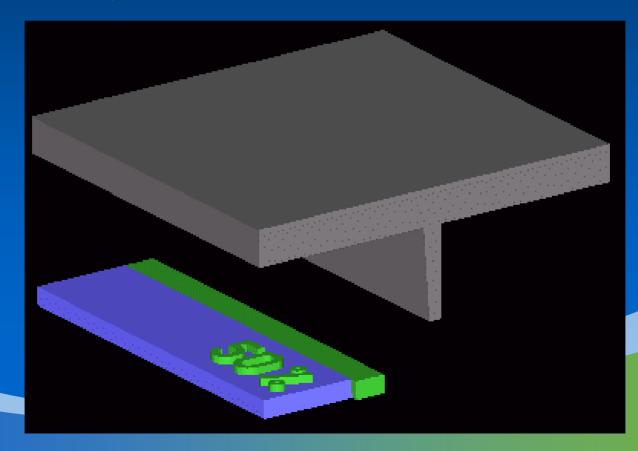
(a) (b) Figure 2-1 Distortion due to nonuniform cooling: (a) part as drawn and (b) part as molded

Higher the shrinkage, Greater the warp

How does wall thicknesses variations affect material flow in the mold?

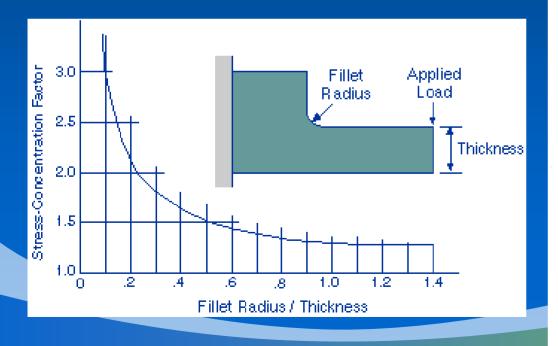
Wall thickness related failures

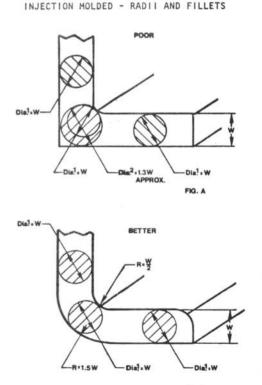



Figure 4-13 A. Acetal valve body design problem—photograph of interior ([1] Fig. 1, reproduced with permission). B. Diagram showing voids in acetal valve of Fig. 4-13A ([1] Fig. 2, reproduced with permission). C. Diagram showing improved design of acetal valve ([1] Fig. 3, reproduced with permission)

THE DIVINE 66% RULE

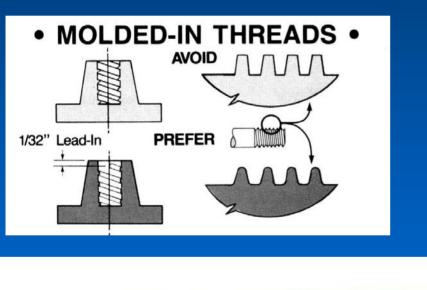
The thickness of ribs should never exceed 66% of the nominal wall thickness.

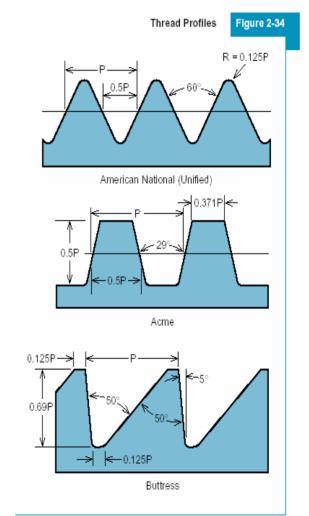

If your ribs never exceed 50-66% of nominal wall thickness you will never have a problem with sink.



Rules.....

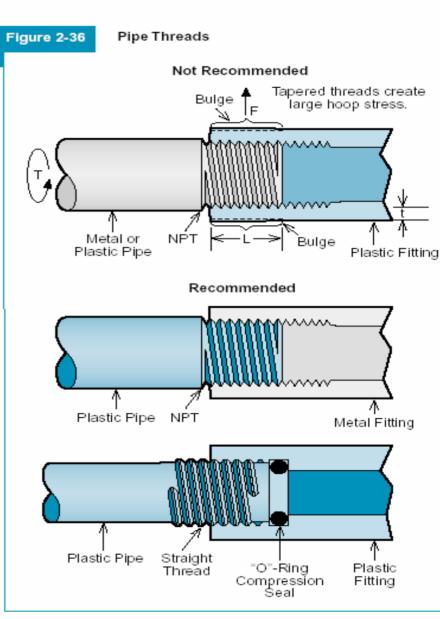
- Avoid sharp corners at all costs
- Radii for inside corners.......50% nominal wall thickness R1 = W/2
- Radii for outside corners.....150% nominal wall thickness R2 = 1.5 W or R2 = R1 + W





Threads

- Threads must have radii.....no flat or "V" notched at root and crest
- Pitch should be less than 1/32 in.
- Lead depth must be greater than 1/32 in.



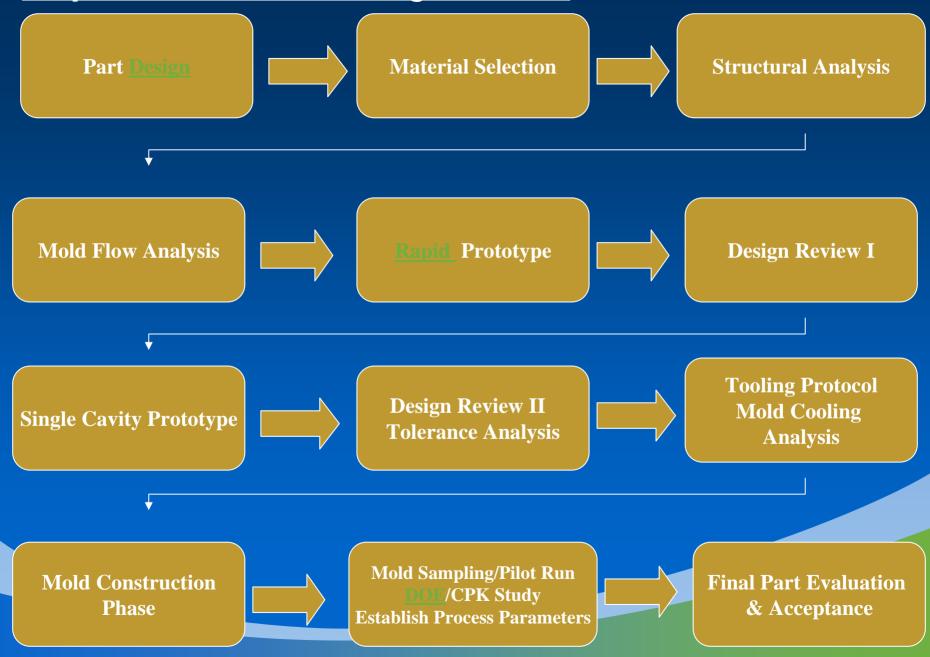
Common thread profiles used in plastic parts.

Threads

Standard NPT tapered pipe threads can cause excessive hoop stresses in the plastic fitting.

Identifying Application Requirements (cont.)

Environmental Considerations


Exposure to UV, IR, X-Ray High humidity Weather Extremes Pollution: Industrial chemicals Microorganisms, bacteria, fungus, mold

The combined effect of the factors may be much more severe than any single factor, and the degradation processes are accelerated many times.

Published test results do not include synergistic effects...always existent in real -life situations.

Steps for Robust Part Design Process

Most Common Process Induced Failures

- Drying of material
- Cold or overheated material
- Under or Over Packing
- Improper additive/regrind mixing and utilization

Materials Drying

Why do we need to dry Plastics Materials?

All Plastics, when exposed to atmosphere, will pick up moisture to a certain degree depending upon the humidity and type of the polymer.

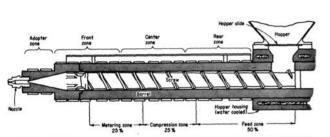
Hygroscopic	Non Hygroscopic	Hygroscopic Pellet
Polymers with high affinity for moisture	Polymers with very little or no affinity for moisture	
Moisture is absorbed into the pellet over time until equilibrium is reached	No absorption of moisture into the pellet. May pick up surface moisture.	
Nylon, ABS	Polystyrene	Moisture is absorbed into the Pellet
Polycarbonate	Polyethylene	Non-Hygroscopic Pellet
Polyester	PVC,	
	Polypropylene	
Polyurethane	Acetal	An and a start and a start and a start and a start
Desiccant Dryer	Hot Air Dryer	Surface Moisture

Is Your Material Dry?Dry airvs.Vs.Dry

Checks the efficiency of the dryer

Checks Material dryness

Temperature


What is important....Barrel temperature or Melt temperature?Optimum <u>MELT TEMPERATURE</u> is the key to successful moldingFactors affecting melt temperature

- Barrel temperature settings
- Screw speed
- Screw back pressure
- Residence time
- Cycle time

Too Cold? Too Hot? Cold or Overheated material EX: PVC

Non-Return Valve

Screw & Barrel

24-2 A typical in-line, reciprocating screw in cross section showing the three primary barrel zones. (Reprinted by permission of Modern Plastics.)

Use as short a nozzle as possible

Nozzle bore diameter as large as possible

Use proper tips

Additives and Regrind

- Loss of properties
- Additives depletion (Antioxidant, Stabilizer)
- Fines
- Inadvertent mixing
- Missing additives

Table 2.3 · Effect of Remolding on the Propertiesof Fiberglass Reinforced Celcon® Acetal

Property	1 st Molding	3rd Molding	5th Molding
Tensile yield strength, MPa Value percent retention	110 —	92.5 81.7	85.6 75.6
Tensile modulus, MPa Value percent retention	8,280 —	7,660 92.6	6,970 84.2
Flexural modulus, MPa Value percent retention	7,250 —	6,830 94.1	6,350 87.6

PROCESS RELATED FAILURE

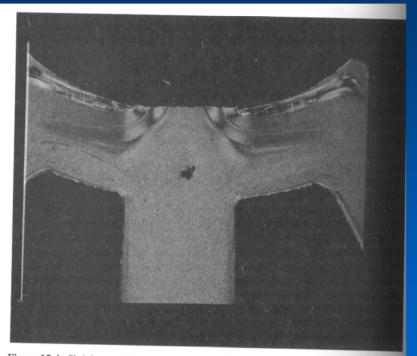
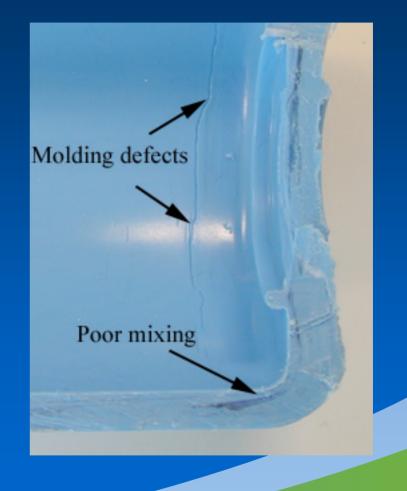



Figure 15-4. Shrinkage voids created by insufficient time and pressure to freeze the gates during in jection molding process. (Courtesy BASF Corporation.)

Service Conditions

Failures due to:

"Reasonable" misuse......Examples

Trash Container, Ladder, Exposure to solvents, Compacts disks in cars

- Use of product beyond its intended lifetime
- Unstable/Unintentional/Unanticipated service condition
- Thermal, Chemical, Environmental, Physical, Biological, Mechanical
- Examples of unintentional service.....coffee can lid, cash drawer, one time short service..bags, cups
- Examples of unexpected service.....underground animals
- Service conditions beyond reasonable misuse
- Simultaneous application of two stresses operating synergistically

Figure 6-16 PE coffee can cover used beyond its intended service; a rectangular hole was cut in th center, leading to cracks at the corners ([1] Fig. 3, reproduced with permission)

Service condition related failures

Failure resulting from ignoring installation instructions

Types Of Failures

Mechanical Thermal Chemical Environmental

Mechanical Failures

Mechanical Failures arise from the applied external forces.

Brittle Failure

•Ductile Failure

Fatigue failure

Creep & Stress relaxation

Brittle & Ductile failures

Brittle Failure

Brittle failures are characterized by a sudden and complete catastrophic failure in which rapid crack propagation is observed without appreciable plastic deformation. Brittle failures, once initiated require no further energy for the crack to propagate.

Ductile failure

Ductile failures are characterized by gradual tearing of the surfaces when applied forces exceed the yield strength of the material. For the crack resulting from the ductile mode of failure, additional energy must be provided to propagate the crack by some type of external loading. Ductile failure is slow and non catastrophic in nature and the failed specimen generally shows gross plastic deformation in terms of stress whitening, jagged and torn surfaces, necking (reduction in cross sectional area) and some elongation.

IMPACT PROPERTIES

- Impact properties relates to the toughness of the material
- Toughness>>>Ability of material to absorb applied energy
- Impact Resistance>>>Resistance to breakage under shock loading
- Impact Energy>>>Crack initiation at surface + crack propagation

BRITTLE (NO YIELDING) VS. DUCTILE FAILURE (definite yielding with cracking)
Notch sensitive plastics (PS, PMMA) are more prone to brittle failure
Ductile - Brittle Transition Temperature

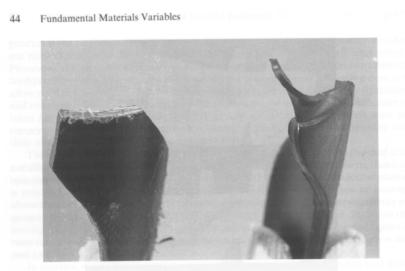
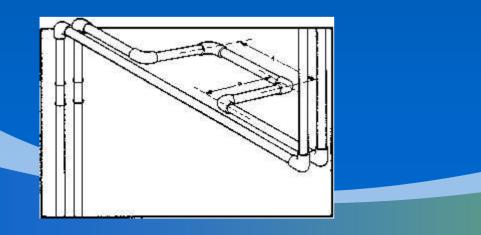


Figure 2-21 Brittle fracture of poorly fused polyethylene garden hose vs. ductile failure of well fused polyethylene ([24] Fig. 3, reproduced with permission)

Creep & Stress Relaxation

- Creep is a non-reversible deformation of material under load over time. Stress relaxation is gradual decrease in stress with time under a constant deformation.
- Creep failure (Creep rupture) occurs when polymer chains can no longer hold the applied load and stress reaches levels high enough for microcracks to form. In case of stress relaxation, at a constant deformation the movement of the polymer chain

reduces the force necessary for a given deformation.



Thermal Failures

High & Low Temperatures (Temperature Extremes) Thermal Expansion & Contraction Thermal degradation Misinterpretation of published data (HDT vs. Continuous use temp.)

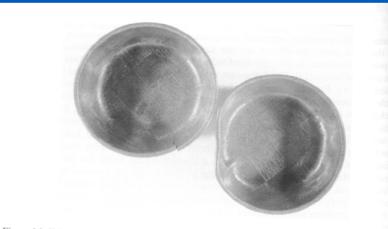


Figure 6-8 IPS salad bowls deformed and cracked due to washing in dishwasher

Chemical Failures

Chemical reactions – Chemical attack

Environmental Stress Cracking – Chemical reaction in presence of stress

Hydrolysis

Chemical compatibility factors*

- Exposure Time
- Temperature
- Chemical Concentration
- Molded-in Stresses
- External Stresses

* Synergistic Effects

Degradation from prolonged contact with Gasoline

Environmental Failures

UV radiation – Indoor/Outdoor Ozone Oxidation Weather-Temperature extremes Acid rain Humidity and moisture Pollution Biological

Analyzing Failures

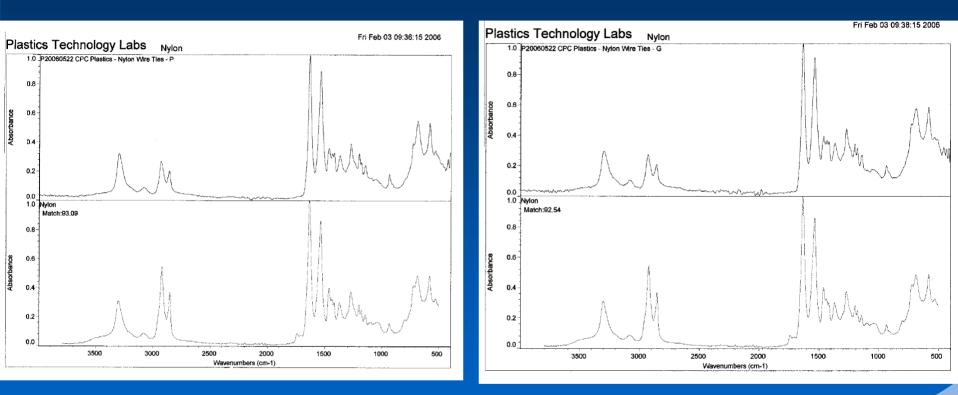
Failure Analysis Steps & Tools

- 1. Visual examination.
- 2. Identification analysis.
- 3. Stress analysis.
- 4. Heat reversion Technique
- 5. Microstructural analysis (Microtoming).
- 6. Mechanical testing.
- 7. Thermal analysis
- 8. Non Destructive Testing (NDT) techniques
- 9. Fractography
- 10. Simulation testing

Visual Examination

- Magnifying Glass & Good Lighting
- Handling evidence
- Cavity Numbers, compare with good parts
- Gate size and location, Sharp corners, Voids
- Visual defects, burn marks, contamination
- User Abuse, Gouge marks, Cuts
- Sectioning parts
- Surface....Smooth, Jagged, Shiny?
- UV effect

Identification Analysis


One of the most Common Reasons for product failure is simply the use of wrong material

Reasons Material Type Grade Regrind Material degradation Missing ingredients Unwanted substances Techniques FTIR Melt Index, DSC Melt Index Melt Index Melt index, Viscosity tests Deformulation, LC, GCMS, PYMS, NMR SEM-EDX

Four Most Common Techniques

- FTIR
- DSC
- Ash Content (Burn-off test) or TGA
- Viscosity tests

Plastics Technology Labs was requested to perform Differential Scanning Calorimetry Analysis (DSC) on two samples.

The results of the DSC testing are as follows:

Sample Name	Peak Tm	ΔHm	Nylon Type
	(°C)	(J/g)	by Tm
Nylon Wire Ties - P	266	75.7	6/6
Nylon Wire Ties - G	265	74.0	6/6

The Tm is the temperature at which a crystalline polymer melts.

 ΔHm is the amount of energy a sample absorbs while melting.

Copies of the scans used to determine these results are attached.

If you have any questions, please feel free to call.

Viscosity

	Brookfield Viscosity (cP)		Relative Viscosity
Ρ	64.6 64.6 64.6 64.6 64.6		43.1 43.1 43.1 43.1 43.1
		Average	43.1
G	71.0 71.0 71.6 71.0 71.6		47.4 47.4 47.8 47.4 47.8
		Average	47.6

P = Poor (Bad Lot) G = Good Lot Standard RV = 47 to 51

Pyrolysis

Stress Analysis

- Photoelastic Method
- Brittle Coatings Method
- Strain gage Method
- Chemical (Solvent Stress Analysis)

Photoelastic Pattern

Load

How to quantify the results.....

- Qualitative......Visual, Best guess, interpretation variations
- **Quantitative**....reliable, measurable values, ASTM D 4093
- Manual measurement techniques
- Equipment : Polariscope or Polarimeter with compensator and Calibrated wedge

Instruments for Photoelastic Analysis (DIY)

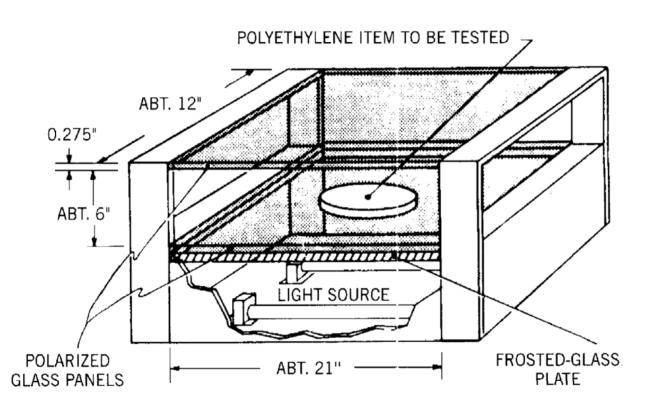


Figure 6-7. Light box for stress-optical sensitivity examination.

Annealing to reduce Molded-in Stresses

Brittle-Coating Method

- Brittle-coating method is a useful technique for measuring localized stress in the part. Brittle coatings are specially prepared lacquers that are usually applied by spraying on actual part.
- Small cracks appear on the surface of the part as a result of external loading.
- The brittle-coating technique is not suitable for detailed quantitative analysis like photoelasticity.
- Helps pinpoint the location of stress in the part

Strain Gauge Method

In order to measure residual stress with these standard sensors, the locked-in stress must be relieved in some fashion (with the sensor present) so that the sensor can register the change in strain caused by removal of the stress. This was usually done destructively in the past -by cutting and sectioning the part, by removal of successive surface layers, or by trepanning and coring.

With strain sensors judiciously placed before dissecting the part, the sensors respond to the deformation produced by relaxation of the stress with material removal. The initial residual stress can then be inferred from the measured strains by elasticity considerations.

Strain Gauge Method ASTM E 837

The Hole-Drilling Method

 The most widely used modern technique for measuring residual stress is the hole-drilling strain gage method of stress relaxation, illustrated on the right.

Chemical Method

- Most plastics, when exposed to certain chemicals while under stress, show stress cracking. Molded parts can be stress analyzed to determine the level of molded-in or residual stress using these techniques.
- ABS Acetic acid immersion test ASTM D 1939
- PVC Acetone immersion test ASTM D 2152

Polycarbonate Solvent Stress Analysis
 GE Plastics test method T-77

Polycarbonate Solvent stress Analysis – Critical Stress
Critical Stress level is defined as the stress level at which a given solvent will craze a

polycarbonate part when exposed for a specified time period.

 Solutions ranging from 0 to 50% by volume of ethyl acetate in Methanol are used for this test using 3 minute immersion test.

Polycarbonate Solvent Stress Analysis Typical Results

Typical test results

Polycarbonate Stress Analysis Report Page 1 of 1

Testing	:	Solvent Stress Analysis			
Test Method		GE Plastics Test Method (T-77	n		
Project #			, Purchase Order # :	102	
Customer	:	Consultek			
Attention	:	Vishu Shah			
Analyst	:	T. Keith			
Date	:	November 28, 2000			
Material	:	Polycarbonate Connector Tube	15		
Test Conditions	:	23°C / 50%RH			
Sample Preparation	:	Not Required			
Sample Type	:	As Received			
Test Duration	:	3 Minutes			
Solvent	:	Methanol / Ethyl Acetate (MeO	H / EtOAc)		
Critical Stress		Clear	Clear	Clear	Clear
(MeOH / EtOAc)		New as Molded	Old as Molded	New Annealed	Old Annealed
			Channel Com	line Descent	

		Stress Crack	Stress Cracking Present	
1200 psi (71:29)	No	No	No	No
1100 psi (69:31)	No	No	No	No
1000 psi (67:33)	Yas	Yes	No	No
800 psi (63:37)	Yes	Yes	No	No
570 psi (50:50)	Yes	Yes	No	No
Samples have a stress level of	< 1100 psi.	< 1100 psi.	< 570 psi.	< 570 psi.

12 samples of Opaque Finished Parts showed a stress level of <800 psi. There were two instances of the parts breaking at a stress level of 570 psi. This accounts for the rating of <800 psi.

Following the test specification above, the following was performed.

A set of three specimens from each test group was immersed in each solution for a period of three minutes. The samples were then removed and placed in deionized water at room temperature for rinsing. The samples were then visually analyzed for stress cracking.

Plastics Technology Laboratories, Inc. reports are issued for the exclusive use of the clients to whom they are addressed. No quotations from reports or use of the Plastics Technology Laboratories, Inc. name is permitted except as expressly authorized in writing. Letters and reports acpyl only to the specific materials, products or processes tested, xammed or surveyed and are no necessarily indicative of the qualities of opparently identical or similar materials, products or processes tested. Laboratories, Inc. with respect to services rendered shall be limited to the anount of consideration pair for such services and not include any consequential damages.

> 50 Pearl Street, Pittsfield, MA 01201 Phone (413) 499-0983, Fax 499-2339 http://www.ptli.com

Heat Reversion Technique

HEAT REVERSION TEST

All plastics manufacturing processes introduce some degree of stress in the finished product. By reversing the process, by reheating the molded or extruded product, the presence of stress can be determined.

The degree and severity of warpage, blistering, wall separation, fish-scaling, and distortion in the gate area of the molded parts indicate stress level.

Note: No quantitative measurements possible

Microstructural Analysis

Microtoming is a technique of slicing an ultra thin section from a molded plastic part for microscopic examination.

- Under packed parts.....voids
- Contamination
- Color dispersion
- Filler dispersion such as glass fibers
- Degree of bonding
- Molded-in stresses using polarizer

old and inhomogeneous m

Mechanical Testing

- Tensile, Impact, compression etc using actual defective parts
- Compare with "Good" parts

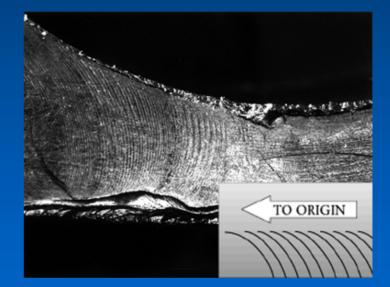
 Grind-up defective parts and mold test bars for physical testing

Thermal Analysis

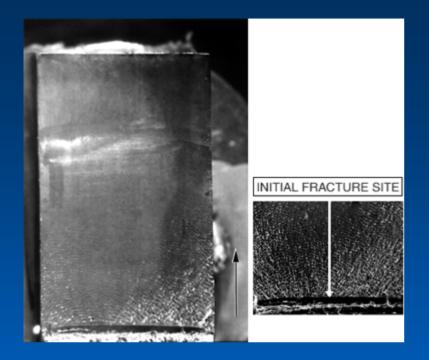
• DSC

Melting point, Glass transition temperature, Crystallinity Level of anti-oxidant in polymer

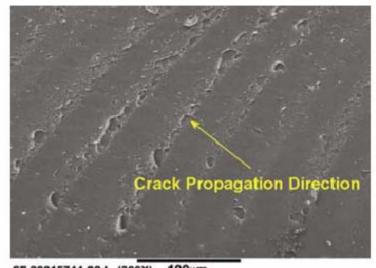
• TGA Quantitative determination of additives


• TMA Thermal expansion, Chemical blowing agent

Electron Microscopy - SEM

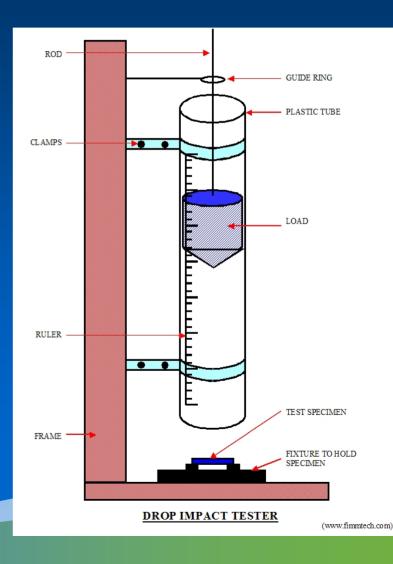


Branching Look for cracks on the failed part. The cracks that end before they reach the edge of the part are AWAY from the origin. These cracks typically exhibit branching.


River marks

River marks may be visible on the fracture edge. A magnifying lens may be used to locate these markings. The pattern shown in the inset illustrates the river markings 'pointing' toward the fracture origin.

Wallner Lines These wavelike bands radiate from the fracture origin.



SE 20015744-C2 L (300X) 100µm

Fatigue striations emanating from fracture origin of polycarbonate latch handle

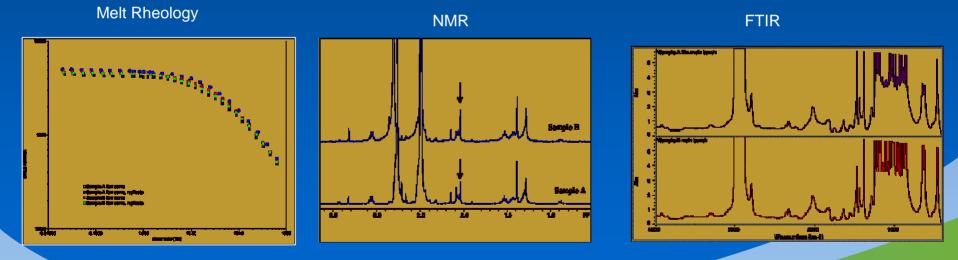
Simulation Testing

Exposing parts similar to the one that has failed to chemicals and other environment to learn about probable cause for failure.

The Case

Company ABC approached Polymer Solutions Incorporated (PSI) for us to determine if any differences existed between two different polyacetal samples, labeled as Sample A and Sample B

The Approach


In order to arrive at this conclusion, PSI used several analytical techniques to compare and contrast the two samples: Melt Rheology

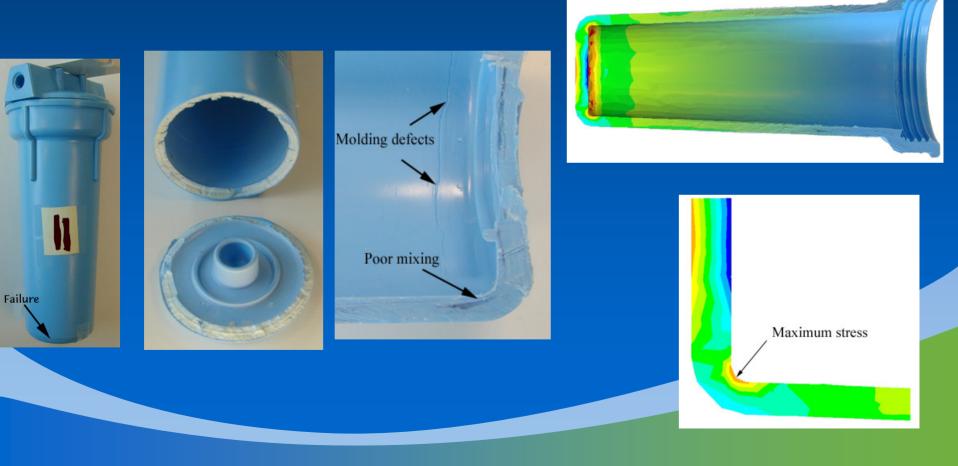
Nuclear magnetic resonance (NMR) spectroscopy

Fourier transform infrared (FTIR) spectrometry

Extraction and additive analysis

Capillary gas chromatography (GC)

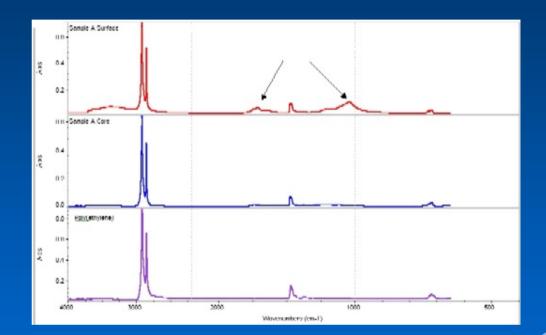
Conclusion


From the data sets it was concluded that Sample A and Sample B are indistinguishable

Source: Polymer solutions

Water Filter Housing

The failure appears as a circumferential crack that completely separated the bottom cap from the housing. This failure caused extensive water damage in the property where it was installed



Outdoors Degradation of High Density Polyethylene

MFR Test

This large difference between specified and tested MFR is due to the molecules breaking because of material degradation.

The formation of carbonyls and byproducts associated with oxidation. The FTIR performed at the surface of the part shows stronger absorption bands compared to the FTIR at the core. Therefore, the level of oxidation at the surface is much higher than the oxidation at the core of the

Source: Madison Group

Failure Analysis Checklist

Material	What material is it? What Grade? Color Number? Lot Number? Any regrind? How Much?
Design	Fail in same place? Knit Line location? Part to print comparison? Sharp corners? Uniform wall thickness?
Application History	Did it ever work? When did it happen? How many parts? Chemical exposure?
Secondary Ops.	How is it joined? Failure mode? Performance? Procedure details?
Environment	Appearance differences? Weathering effects? Chemical Exposure? Compatibility checked?
End-Use	In-Use? In-storage? Accidental? Abuse? Source: GE Plastics

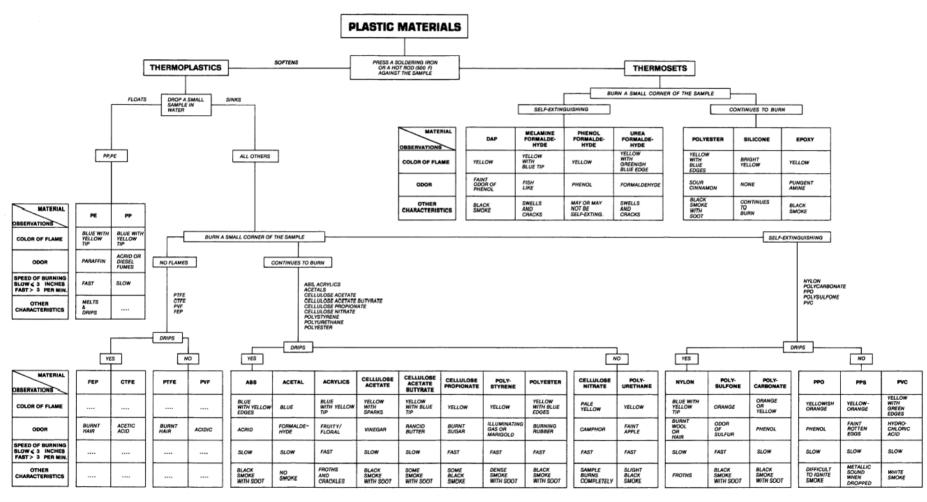
Identifying Plastics Materials

• Simple methods

Advance methods

SIMPLE METHODS OF IDENTIFICATION

- Useful for identifying basic polymer and differentiating between the different types of polymers within the same family.
- Requires no special equipment or in-depth knowledge of analytical chemistry
- Simple step by step identification procedure using flow chart


<u>Kcrobat Header - [96320001.PDF]</u> <u>File Edit D</u>ocument <u>V</u>iew <u>W</u>indow <u>H</u>elp

_ 8 ×

C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
C → □
D → □
D → □
D → □
D → □
D → □
D → □
D →

Þ

PLASTICS IDENTIFICATION CHART

ishu Shah, Consultek, LLC., 1102 Seneca Pl., Diamond Bar, CA 91765 Phone: (909) 860-3040 Fax: (909) 860-6267 E-Mail: consultek@cosmoslink.net

IBChart

122% 🔻 II 4 1 of 1 🕨 🕅 15.43 x 9 in 🗟 🗸 🗐

BURN TEST OBSERVATIONS

- Does the material burn?
- Color of flame
- Odor
- Does the material drip while burning?
- Nature of smoke and color of smoke
- The presence of soot in the air
- Self-extinguishes or continues to burn
 - Speed of burning fast or slow

Product Liability

The manufacturer may be held liable if:

- 1. The product is defective in design and is not suitable for its intended use.
- 2. The product is manufactured defective and proper testing and inspection was not carried out.
- 3. The product lacks adequate labeling and warnings.
- 4. The product is unsafely packaged.
- 5. The proper records of product sale, distribution, and manufacturer are not kept up-to-date.
- 6. The proper records of failure and customer complaints are not maintained

INSTRUCTIONS, WARNING LABELS, AND TRAINING TESTING AND RECORDKEEPING

- Product design
- Reliability Testing
- Document Control
- Warning Labels
- Record Retention
- Recall Procedures
- Liability Incidents and Investigation
- Litigation Teaching

Product Liability Prevention

Randall L. Goodden

Contents

The Current State of Law and Litigation Understanding the Legal Process **Understanding Quality Reliability Testing** Selection the In-house Product Liability Expert and Creating the Corporate Product Liability TEAM **Effective Reviews Design** Warnings and Instructions **Records Retention and Document Control Contractual Agreements** Warranties and Misrepresentation **Product Recalls Investigating has Potential Liability Incident Entering into Litigation** Going to Trial **Put Studies**

Local Failure Analysis Laboratories

KARS' ADVANCED MATERIALS, INC.
 7271-CD Garden Grove Blvd.Garden Grove, CA 92841
 (714) 892-8987 Fax: (714) 894-0225 kars@karslab.com

Seal Laboratories Inc. 250 N. Nash Street, El Segundo CA 90245 PH: 310-322-2011 www.seallabs.com

CRT Laboratories, Inc. 1680 N. Main Street, Orange, CA 92867 www.crtlabs.com

PH: 800-597-LABS

OCM Test Laboratories, Inc. 3883 East Eagle Drive Anaheim, CA 92807

Phone Number: 714-630-3003 Ext. 222 Fax Number: 714-630-4443

Contact: Bruce Sauer Email: sauer@ocmtestlabs.com

Test Laboratories

 Plastics Technology Laboratories, Inc. 50 Pearl Street, Pittsfield, MA 01201 Tel. (413) 499-0983 | Fax (413) 499-2339 E-Mail <u>ptli@ptli.com</u>

Polymer Solutions Incorporated 1872 Pratt Drive, # 1375 Blacksburg, VA 24060 540.961.4300 • fax: 540.961.5778

The Madison Group 505 S. Rosa Rd., Suite 124 Madison, Wisconsin 53719 (608)231-1907; fx:(608)231-2694 info@madisongroup.com

Jordi FLP.
 4 Mill Street * Bellingham * Massachusetts 02019 * USA
 Tel: +1 (508) 966-1301 * Fax: +1 (508) 966-4063

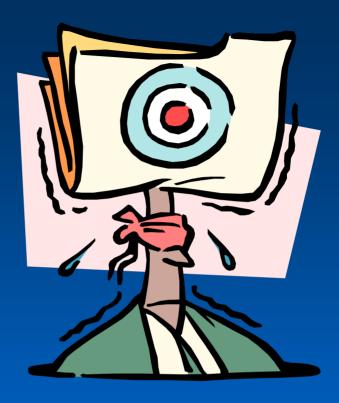
CAL POLY POMONA COLLEGE OF THE EXTENDED UNIVERSITY Plastics Engineering Technology Certificate

This four-course certificate program provides practical instruction applicable to materials, processing, product design and tooling. The program is targeted to technical and non-technical audiences desiring to acquire basic knowledge, expand their horizon, enhance their career or simply take as a refresher course. The main emphasis is on practical aspects of Plastics Engineering Technology without being extremely technical so that the knowledge achieved can be applied in day-to-day applications.

PLASTICS: THEORY AND PRACTICE

PLASTICS PART DESIGN FOR INJECTION MOLDING/ TOOLING FOR INJECTION MOLDING

SCIENTIFIC INJECTION MOLDING



FALL

Spring

WINTER

Any Questions?

